Lesson 6

Support vector machine (SVM)

Support vector machine

$$
\left.\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & & \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & & 0 & \\
& & & 0 & 0 & 0
\end{array}\right)
$$

Support vector machine

Support vector machine

Support vector machine

Support vector machine - Linear or Non-linear

Non-Linear to Linear

Linear Support vector machine

Linear Support vector machine

Linear Support vector machine

Linear Support vector machine

Linear Support vector machine

Linear Support vector machine

We choose the hyperplane that has the maximum separating margin

What is Separating Margin?

H is the separating hyperplane
H^{+}is the plane parallel to H and passing through the nearest +ve points to H
H^{-}is the plane parallel to H and passing through the nearest -ve points to H

Separating margin is the distance between H^{+}and H^{-} We choose H that has the maximum margin.

Finding Separating Hyperplane with maximum Margin?

Finding Separating Hyperplane with maximum Margin?

Finding Separating Hyperplane with maximum Margin?

Finding Separating Hyperplane with maximum Margin?

Finding Separating Hyperplane with maximum Margin?

Let x be a point in space.
Let r be the distance of the point x from the hyperplane $g(x)$, and x_{p} be the corresponding projection point of x on $g(x)$.

Now, vector \boldsymbol{x} can be defined by the sum of the vector $\boldsymbol{x}_{\boldsymbol{p}}$ and vector \boldsymbol{r}.

$$
\begin{aligned}
\boldsymbol{x} & =\boldsymbol{x}_{\boldsymbol{p}}+\boldsymbol{r} \\
\Rightarrow \boldsymbol{x} & =\boldsymbol{x}_{\boldsymbol{p}}+r \frac{\boldsymbol{\omega}}{\|\boldsymbol{\omega}\|}
\end{aligned}
$$

Finding Separating Hyperplane with maximum Margin?

Let x be a point in space.
Let r be the distance of the point x from the hyperplane $g(x)$, and x_{p} be the corresponding projection point of x on $g(x)$.

Now, vector \boldsymbol{x} can be defined by the sum of the vector $\boldsymbol{x}_{\boldsymbol{p}}$ and vector \boldsymbol{r}.

$$
\begin{aligned}
\boldsymbol{x} & =\boldsymbol{x}_{\boldsymbol{p}}+\boldsymbol{r} \\
\Rightarrow \boldsymbol{x} & =\boldsymbol{x}_{\boldsymbol{p}}+r \frac{\boldsymbol{\omega}}{\|\boldsymbol{\omega}\|}
\end{aligned}
$$

If you substitute \boldsymbol{x} in $\mathrm{g}(\boldsymbol{x})$.

$$
\begin{aligned}
& \Rightarrow g(x)=\omega^{T} x_{p}+r \frac{\omega^{T} \omega}{\|\omega\|}+\omega_{0} \\
& \Rightarrow g(x)=\omega^{T} x_{p}+\omega_{0}+r \frac{\omega^{T} \omega}{\|\omega\|} \Rightarrow g(x)=r \frac{\omega^{T} \omega}{\|\omega\|} \Rightarrow r=\frac{g(x)}{\|\omega\|}
\end{aligned}
$$

Finding Separating Hyperplane with maximum Margin?

Distance of $\boldsymbol{x}_{\boldsymbol{p}}$ from $\mathrm{g}(\mathrm{x})=0$ is $\quad r=\frac{g(\boldsymbol{x})}{\|\boldsymbol{\omega}\|}$

So, the distance of origin from $g(x)=0$ is

$$
\begin{aligned}
& \Rightarrow r_{\mathbf{0}}=\frac{\boldsymbol{\omega}^{T} \mathbf{0}+\omega_{0}}{\|\boldsymbol{\omega}\|} \\
& \Rightarrow r_{\mathbf{0}}=\frac{\omega_{0}}{\|\boldsymbol{\omega}\|}
\end{aligned}
$$

Finding Separating Hyperplane with maximum Margin?

Finding Separating Hyperplane with maximum Margin?

To define the expression for $\mathrm{H}+$ and H -, let us make the following assumptions.

Given a datapoint $<\boldsymbol{x}_{\boldsymbol{i}}, y_{i}>$ where $y_{i} \in\{+v e,-v e\}$ is the class label of $\boldsymbol{x}_{\boldsymbol{i}}$,

- let us replace -ve by $\mathbf{+ 1}$, and -ve by $\mathbf{- 1}$.

Finding Separating Hyperplane with maximum Margin?

To define the expression for $\mathrm{H}+$ and H -, let us make the following assumptions.

Given a datapoint $<\boldsymbol{x}_{\boldsymbol{i}}, y_{\boldsymbol{i}}>$ where $y_{i} \in\{+v e,-v e\}$ is the class label of $\boldsymbol{x}_{\boldsymbol{i}}$,

- Let us replace -ve by +1 , and -ve by -1 .
- Now, each data point will satisfy the following

$$
\begin{aligned}
& \boldsymbol{\omega}^{T} \boldsymbol{x}_{\boldsymbol{i}}+\omega_{\mathbf{0}} \geq 1, \forall y_{\boldsymbol{i}}=+1 \\
& \boldsymbol{\omega}^{T} \boldsymbol{x}_{\boldsymbol{i}}+\omega_{\mathbf{0}} \leq-1, \forall y_{\boldsymbol{i}}=-1
\end{aligned}
$$

Finding Separating Hyperplane with maximum Margin?

To define the expression for $\mathrm{H}+$ and H -, let us make the following assumptions.

Given a datapoint $<\boldsymbol{x}_{\boldsymbol{i}}, y_{i}>$ where $y_{i} \in\{+v e,-v e\}$ is the class label of $\boldsymbol{x}_{\boldsymbol{i}}$,

- let us replace -ve by $\mathbf{+ 1}$, and -ve by $\mathbf{- 1}$.
- Now, each data point will satisfy the following

$$
\begin{gathered}
\boldsymbol{\omega}^{T} \boldsymbol{x}_{\boldsymbol{i}}+\omega_{\mathbf{0}} \geq 1, \forall y_{\boldsymbol{i}}=+1 \\
\boldsymbol{\omega}^{T} \boldsymbol{x}_{\boldsymbol{i}}+\omega_{\mathbf{0}} \leq-1, \forall y_{\boldsymbol{i}}=-1
\end{gathered}
$$

The above two expression can be merged to form a single expression

$$
y_{\boldsymbol{i}}\left(\boldsymbol{\omega}^{T} \boldsymbol{x}_{\boldsymbol{i}}+\omega_{\mathbf{0}}\right) \geq 1, \forall x_{\boldsymbol{i}}
$$

Finding Separating Hyperplane with maximum Margin?

To define the expression for $\mathrm{H}+$ and H -, let us make the following assumptions.

Given a datapoint $<\boldsymbol{x}_{\boldsymbol{i}}, y_{i}>$ where $y_{i} \in\{+v e,-v e\}$ is the class label of $\boldsymbol{x}_{\boldsymbol{i}}$,

- let us replace -ve by $\mathbf{+ 1}$, and -ve by $\mathbf{- 1}$.
- Now, each data point will satisfy the following

$$
\begin{aligned}
& \boldsymbol{\omega}^{T} \boldsymbol{x}_{\boldsymbol{i}}+\omega_{\mathbf{0}} \geq 1, \forall y_{\boldsymbol{i}}=+1 \\
& \boldsymbol{\omega}^{T} \boldsymbol{x}_{\boldsymbol{i}}+\omega_{\mathbf{0}} \leq-1, \forall y_{\boldsymbol{i}}=-1
\end{aligned}
$$

The above two expression can be merged to form a single expression

$$
\begin{aligned}
& y_{i}\left(\boldsymbol{\omega}^{T} \boldsymbol{x}_{\boldsymbol{i}}+\omega_{\mathbf{0}}\right) \geq 1, \forall \boldsymbol{x}_{\boldsymbol{i}} \\
& y_{\boldsymbol{i}}\left(\boldsymbol{\omega}^{T} \boldsymbol{x}_{\boldsymbol{i}}+\omega_{\mathbf{0}}\right)-1 \geq 0, \forall \boldsymbol{x}_{\boldsymbol{i}}
\end{aligned}
$$

Finding Separating Hyperplane with maximum Margin?

$\mathrm{H}: \boldsymbol{g}(\boldsymbol{x})=\boldsymbol{\omega}^{T} \boldsymbol{x}+\omega_{\mathbf{0}}=0$
$\mathrm{H}+: \boldsymbol{g}(\boldsymbol{x})=\boldsymbol{\omega}^{T} \boldsymbol{x}+\omega_{\mathbf{0}}=1$

H-: $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{\omega}^{T} \boldsymbol{x}+\omega_{\mathbf{0}}=-1$

Finding Separating Hyperplane with maximum Margin?

$$
\begin{gathered}
\mathrm{H}: \boldsymbol{g}(\boldsymbol{x})=\boldsymbol{\omega}^{T} \boldsymbol{x}+\omega_{\mathbf{0}}=0 \\
\mathrm{H}+: \boldsymbol{g}(\boldsymbol{x})=\boldsymbol{\omega}^{T} \boldsymbol{x}+\omega_{\mathbf{0}}=1 \\
\mathrm{H}-: \boldsymbol{g}(\boldsymbol{x})=\boldsymbol{\omega}^{T} \boldsymbol{x}+\omega_{\mathbf{0}}=-1 \\
\operatorname{Margin}=r_{\boldsymbol{H}^{+}}-r_{\boldsymbol{H}^{-}} \\
=\frac{\omega_{0}-1}{\|\boldsymbol{\omega}\|}-\frac{\omega_{0}+1}{\|\boldsymbol{\omega}\|} \\
=\frac{\omega_{0}-1-\omega_{0}-1}{\|\boldsymbol{\omega}\|} \\
\Rightarrow \operatorname{Margin}=\frac{-2}{\|\boldsymbol{\omega}\|}
\end{gathered}
$$

Finding Separating Hyperplane with maximum Margin?

$$
\begin{aligned}
& \mathrm{H}: \boldsymbol{g}(\boldsymbol{x})=\boldsymbol{\omega}^{T} \boldsymbol{x}+\omega_{\mathbf{0}}=0 \\
& \begin{aligned}
& \mathrm{H}+: g(x)=\boldsymbol{\omega}^{T} \boldsymbol{x}+\omega_{\mathbf{0}}=1 \\
& \mathrm{H}-: \boldsymbol{g}(\boldsymbol{x})=\boldsymbol{\omega}^{T} \boldsymbol{x}+\omega_{\mathbf{0}}=-1 \\
& \text { Margin }=r_{\boldsymbol{H}^{+}}-r_{\boldsymbol{H}^{-}} \\
&=\frac{\omega_{0}-1}{\|\boldsymbol{\omega}\|}-\frac{\omega_{0}+1}{\|\boldsymbol{\omega}\|} \\
&=\frac{\omega_{0}-1-\omega_{0}-1}{\|\boldsymbol{\omega}\|} \\
& \Rightarrow \operatorname{Margin}=\frac{-2}{\|\boldsymbol{\omega}\|}
\end{aligned}
\end{aligned}
$$

Finding Separating Hyperplane with maximum Margin?

Task is to find the hyperplane $(\mathrm{g}(\mathrm{x})=0)$ that maximizes the margin $\frac{2}{\|\omega\|}$

$$
\begin{aligned}
\operatorname{Margin} & =\frac{2}{\|\boldsymbol{\omega}\|} \\
\Rightarrow \operatorname{Margin} & =\frac{1}{\frac{\|\omega\|}{2}}
\end{aligned}
$$

Finding Separating Hyperplane with maximum Margin?

Task is to find the hyperplane $(\mathrm{g}(\mathrm{x})=0)$ that maximizes
the margin $\frac{2}{\|\omega\|}$

$$
\begin{aligned}
\text { Margin } & =\frac{2}{\|\omega\|} \\
\Rightarrow \operatorname{Margin} & =\frac{1}{\frac{\|\omega\|}{2}}
\end{aligned}
$$

Maximizing $\frac{2}{\|\omega\|}$ is equivalent to minimizing $\frac{\|\omega\|}{2}$
Minimizing $\frac{\|\omega\|}{2}$ is equivalent to minimizing $\frac{\omega^{T} \omega}{2}$

Finding Separating Hyperplane with maximum Margin?

Now, we need to solve the following optimization

Minimize objective function $\frac{\omega^{T} \omega}{2}$
Subject to the constraint $\quad y_{i}\left(\boldsymbol{\omega}^{T} x_{i}+\omega_{0}\right) \geq 1, \forall x_{i}$

Finding Separating Hyperplane with maximum Margin?

Objective function is to minimize $\frac{\omega^{T} \omega}{2}$

$$
\text { Subject to } y_{i}\left(\boldsymbol{\omega}^{T} \boldsymbol{x}_{\boldsymbol{i}}+\omega_{0}\right) \geq 1, \forall x_{\boldsymbol{i}}
$$

To find the parameters ω and where ω_{0}, solve the following optimization function

$$
\boldsymbol{L}_{\boldsymbol{p}}=\frac{\boldsymbol{\omega}^{T} \boldsymbol{\omega}}{2}-\sum_{i=1}^{n} \lambda_{i}\left(y_{i}\left(\boldsymbol{\omega}^{T} \boldsymbol{x}_{\boldsymbol{i}}+\omega_{0}\right)-1\right)
$$

where λ_{i} are Lagrange multipliers

What are the support vectors?

$$
\boldsymbol{L}_{p}=\frac{\boldsymbol{\omega}^{T} \boldsymbol{\omega}}{2}-\sum_{i=1}^{n} \lambda_{i}\left(y_{i}\left(\boldsymbol{\omega}^{T} \boldsymbol{x}_{i}+\omega_{0}\right)-1\right)
$$

[^0]In order to find the parameters, we need to solve this objective function.

Summary

- What is separating hyperplane?
- How to define separating hyperplane?
- What are Support Vector Machine?
- How to classify a new example using SVM

[^0]: [

